
LLNL-CONF-522031

GTI: A Generic Tools
Infrastructure for Event Based
Tools in Parallel Systems

T. Hilbrich, M. S. Mueller, B. R. de Supinski, M.
Schulz, W. E. Nagel

January 5, 2012

International Parallel and Distributed Processing Symposium
(IPDPS)
Shanghai, China
May 21, 2012 through May 25, 2012



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



GTI: A Generic Tools Infrastructure for Event-Based Tools in Parallel Systems

Tobias Hilbrich∗, Matthias S. Müller∗, Bronis R. de Supinski†, Martin Schulz† and Wolfgang E. Nagel∗
∗Technische Universität Dresden, ZIH

D-01062 Dresden, Germany,
Email: {tobias.hilbrich, matthias.mueller, wolfgang.nagel}@tu-dresden.de

†Lawrence Livermore National Laboratory
Livermore, CA 94551

Email: {bronis,schulzm}@llnl.gov

Abstract—Runtime detection of semantic errors in MPI ap-
plications supports efficient and correct large-scale application
development. However, current approaches scale to at most one
thousand processes and design limitations prevent increased
scalability. The need for global knowledge for analyses such
as type matching, and deadlock detection presents a major
challenge. We present a scalable tool infrastructure – the
Generic Tool Infrastructure (GTI) – that we will use to
implement MPI runtime error detection tools and that applies
to other use cases. GTI supports simple offloading of tool
processing onto extra processes or threads and provides a tree
based overlay network (TBON) for creating scalable tools that
analyze global knowledge. We present its abstractions and code
generation facilities that ease many hurdles in tool develop-
ment, including wrapper generation, tool communication, trace
reductions, and filters. GTI ultimately allows tool developers
to focus on implementing tool functionality instead of the
surrounding infrastructure. Further, we demonstrate that GTI
supports scalable tool development through a lost message
detector and a phase profiler. The former provides a more
scalable implementation of important base functionality for
MPI correctness checking, while the latter tool demonstrates
that GTI can serve as the basis of further types of tools.
Experiments with up to 2048 cores show that GTI’s scalability
features apply to both tools.

Keywords-Tools, Tool infrastructure, Message Passing Inter-
face, Scalability, Runtime error detection

I. INTRODUCTION

The Message Passing Interface (MPI) [1] is complex,
which makes erroneous use common. Due to the richness
of available MPI implementations, some errors may not
manifest until a different MPI implementation or computing
system is used. Runtime error detection tools can detect
many of those errors, and thus, drastically reduce debugging
time and increase the reliability of parallel programs. A
variety of such tools exist, e.g., ISP [2], MPI-Check [3],
Umpire [4], and Marmot [5].

A striking issue with these tools is that none of them
provides satisfactory support for the detection of non-local
errors – checks that require information from more than one
process – while scaling to more than about one thousand
processes. Further, each tool provides a different overall
set of checks so that complete coverage would require
using multiple tools. From the perspective of application

developers, the situation is inefficient and does not cover
errors that only manifest at scale. With petascale systems,
providing test cases of less than one thousand processes may
not represent the behavior of the production input sets. Thus,
we are developing a new MPI runtime error detection tool
called MUST [6], which combines our experiences gathered
in the development of Umpire and Marmot. Our main goal
with this project is the development of a scalable tool that
can detect wide ranges of usage errors.

Our effort requires a scalable and flexible infrastructure to
collect events, to direct them, and to facilitate their analysis
efficiently. However, such an infrastructure currently does
not exist. Both Marmot and Umpire use a client server
approach to implement non-local checks like type matching
and deadlock detection. This approach limits the scalability
of the tool dramatically. Further, the placement of checks
in these tools cannot be varied. They are implemented on
either the application processes or on the manager/server and
cannot be placed on the other, as they strictly assume where
information for the checks is available. More flexibility for
these correctness tools in particular, and reduced time to
solution for developing scalable tools that operate on event
traces in general, requires a comprehensive infrastructure.
Event-based tools are all types of tools that analyze data
that is intercepted during events, such as function or API
calls. We present an approach for this infrastructure, the
Generic Tool Infrastructure (GTI). It provides scalability and
makes tool development more productive. We achieve this by
providing a high level abstraction that focuses on the actual
tasks of the tool, instead of distracting the developer with
the implementation of a wide range of standard components
that most tools require. Our contributions include:
• The design of a reusable, modular and scalable infrastruc-

ture for event-based tools;
• A novel abstraction to ease the development of new event-

based tools;
• Integration of event aggregation on Tree Based Overlay

Networks (TBONs) into the abstraction;
• Automatic generation of wrappers, a communication sys-

tem, trace records, record routing, filtering, and other
advanced features;



Applica'on	
  Process	
  

Applica'on	
  

Wrapper	
  

MPI	
  Library	
  

Event	
  

Comm.	
  System	
  

Tool	
  Process/Thread	
  

Tool	
  Driver	
  
Comm.	
  System	
  

Tool	
  Analysis	
  

(a) Tool without GTI.

Applica'on	
  Process	
  

Applica'on	
  

PnMPI	
  

MPI	
  Library	
  

Event	
  

GTI	
  

Tool	
  Process/Thread	
  

GTI	
  

Tool	
  Analysis	
  

(b) Tool with GTI.
Figure 1. Component illustration of MPI tools with and without GTI.

• Flexible adaption to individual use-cases and platforms;
• Two case studies of GTI-based tools, a lost message

detector and a phase profiler;
• Experimental results with two widely used benchmarks

for up to 2048 tasks.
Overall our results demonstrate that GTI incurs low overhead
for non-local analyses and provides scalability features that
apply to different tool types. Our lost message detector
provides a more scalable runtime MPI message matching
than any previous MPI runtime error detection tool.

Section II presents an overview of GTI and its basic
principles, while Section III introduces the abstractions of
GTI in more detail and illustrates them with an example.
Afterwards, we present the scalability extensions that GTI
provides and how it incorporates them into its abstraction
(Section IV). We discuss GTI’s code generation components
in Section V and then introduce the lost message detector
and the phase profiler in Section VI. Section VII presents
our experimental results for these examples.

II. GTI OVERVIEW

Parallel event-based tools often require significant infras-
tructure development, starting with the creation of wrappers
that intercept events. If the tool does not analyze events
locally within the application processes, it also requires the
creation of trace records that capture the intercepted infor-
mation, as well as a communication system that forwards
these records to extra tool processes or threads that the tool
spawns in order to offload analyses from the critical path.
The tool implementer must develop this infrastructure before
the analyses that perform event processing can be realized.

Figure 1(a) illustrates components that a tool requires to
offload MPI analyses. The tool developer must provide the
components that we illustrate as striped. This process for
creating portable and scalable tools is time consuming, since
most effort goes into the development of the infrastructure,
instead of the actual tool actions, i.e., its analyses.

GTI removes this burden. The tool developer only writes
the tool analyses that GTI loads, manages, and activates.
Figure 1(b) illustrates the GTI tool development process.
GTI handles all infrastructure related tasks, which requires

the tool developer to specify which events should trigger the
analyses and the overall tool layout. GTI provides the under-
lying infrastructure that reads this information and generates
all required code including code for wrapping, trace record
creation, data transport, and analysis management.

A. The GTI Abstraction

GTI-based tool development starts with a high level
abstraction that describes the tool analyses to perform. This
abstraction follows a design with these properties:
• A tool consists of a set of analyses, e.g., for runtime error

detection, analyses would be correctness checks;
• Modules contain multiple analyses (e.g., a communicator

checking module can contain multiple correctness checks
on communicators) and provide a C++ interface, compiled
in dynamically loadable modules;

• Each module is agnostic to its place of execution, i.e.,
it can execute on an application process or on any other
process/thread that the tool uses;

• Each module may have dependencies on other modules,
i.e., a check to validate communicators can depend on a
module that tracks user-defined communicators;

• XML specifications describe the inputs for each analysis
within any module and which events provide them.
The developer implements the individual tool actions

(analyses) as shared libraries (modules). These and existing
modules cooperate to implement the overall tool functional-
ity. The tool developer describes which data of what events
these analyses require, instead of directly implementing
wrappers, trace record creation, and communication. We use
XML specifications for this task. A tool developer provides
them with the implementation of his tool modules. Each
analysis may execute locally (within the application) or
on an extra tool place (thread/process). Since each module
describes its dependencies, GTI can guarantee that other
required modules are present at their place of execution.

B. Software Stack

The implementation of GTI abstractions uses PnMPI [7]
as a base infrastructure. PnMPI extends the MPI profiling



0	
  

1	
  

2	
  

3	
  

T0	
  

T1	
  

T2	
  

Legend	
  

i	
  

Ti	
  

Application Process 

Tool process (place) 

Analysis 

TBON connection 

Figure 2. High-level illustration of a GTI-based tool.

interface through a tool stack abstraction so that multiple
tools can be used together. More importantly, PnMPI allows
these tools to cooperate with each other through a service
mechanism. We refer to each tool that is loaded into PnMPI
as a module. Figure 1(b) illustrates the use of PnMPI as a
base service for intercepting events.

For scalability, we use extra processes to which the tool
can offload computations. A Tree-Based Overlay Network
(TBON) connects these extra processes, or places.

Figure 2 shows a high level example of a GTI-based
tool with four application processes and three tool places.
The application processes always form the first TBON layer.
Places T0 and T1 form the second layer, while T2 forms a
third. The example configuration uses one module (depicted
as a small square) on each application-layer process, three
modules on the second layer, and two modules on the third.
Each module can contain multiple analyses.

GTI provides flexibility for the communication system
through a mechanism that allows the tool specification to
select the communication medium (e.g., TCP or MPI) and
to modify communication timing and aggregation [6]. GTI
also allows tool developers to use multiple TBON’s in one
run and trees may also lack a root, if no global analysis
is necessary. Tailored communication mechanisms enable
offline or trace-based tool workflows. A particular module
can write events into a file for later analysis. A GTI-based
tool can analyze these traces after the application run.

III. TOOL SPECIFICATION

GTI provides a generator component that instantiates
tools. An instance of a GTI-based tool is formed by in-
cluding the PnMPI library into the application, either by
relinking with PnMPI or by using LD PRELOAD. PnMPI
then loads all GTI modules and activates the tool. GTI has
three types of modules: ones that the tool developer provides
to implement the analysis routines; intermediate modules
that GTI generates automatically; GTI core modules that
provide communication and offloading of tool computations.
GTI generates the intermediate modules, which implement
wrappers, trace records, and record forwarding and then
triggers the execution of analyses. We detail the workflow
that drives the generation of these intermediate modules in
Section V. This section focuses on the steps that a tool
developer uses to create a GTI-based tool.

A. Component Overview

A tool instance is formed by providing three types of
specifications (layout, API, analysis) and an installation of
the tool. A tool installation consists of a set of modules
and the three specifications. GTI uses a fourth specification
to describe basic communication services. The individual
specifications have the following tasks:
• Analysis specification: describes the analyses (actions)

that the tool uses to provide its service.
• API specification: describes the functions (events) to

intercept and their arguments that specific analyses use.
• GTI specification: describes available communication

modules and drivers for tool places.
• Layout specification: describes the layout of a tool

instance, i.e., number and size of TBON layers, selection
of communication modules, and placement of analyses.
These specifications are written in XML. Besides these

specifications, the tool modules consist of an implementation
and a C++ interface. GTI uses the interface to invoke the
module whenever an event occurs to which the API spec-
ification subscribes the module. The interface also allows
modules to cooperate and provide services to each other.

A tool developer who uses GTI provides the implemen-
tation of the analysis modules, their interfaces and their
specification. The developer also specifies the events that
the analyses monitor. GTI provides specification templates
and developer tools to aid in this process. Finally, the tool
user or developer provides a layout to instantiate the tool.
Often tool developers can provide a default layout, such that
users can directly use a GTI-based tool like any other tool.

B. Example

To illustrate the GTI tool specification steps, we use a sim-
ple example tool that detects imbalances in MPI collective
communication. A common source of performance problems
is imbalance that causes some tasks to wait for others. One
such scenario involves collective calls for which some tasks
issue the collective later than others, as Figure 3(a) illustrates
for MPI_Barrier calls. We sketch how a GTI based tool
could detect such imbalances in the following.

As a first step, a tool developer must determine the infor-
mation that this particular analysis requires: the imbalance
detector must be informed of the start times of all collective
calls to perform its analysis. It then must match collectives
in order to determine when the first and last process called
one of the matching collectives (this description ignores
communicators for simplicity).

With GTI, the tool developer implements the collective
matching and start time analysis as a module, i.e., a shared
library, and provides its interface. We refer to this module as
the “dilation module”. To handle communicators correctly,
the developer could utilize existing modules, e.g., a module
for tracking communicator creation and deletion. GTI will



P0	
  

P1	
  

P2	
  

P3	
  

MPI_Barrier	
  

Imbalance	
  (dila6on)	
  

(a) Collective imbalance.

API	
  Specifica,on:	
  MPI	
  

MPI_Barrier	
  (…)	
  

MPI_Bcast	
  (…)	
  

...
 

Analysis	
  Specifica,on:	
  	
  
	
  Dila)on	
  Tool	
  

Dila)on	
  Module	
  

no,fyCollStart	
  (tStart)	
  

mapped	
  to	
  

(b) Illustration of a collective imbalance detector tool based on GTI.

0	
  

1	
  

2	
  

3	
  

T0	
  

Dila+on	
  
Module	
  

(c) Possible instantiation.
Figure 3. Illustration of a GTI based imbalance detector tool.

automatically notify the dilation module, whenever a process
issues a collective call. We ensure this notification through
the analysis and API specifications, which tell GTI that the
dilation module should be informed about all collective calls.

Figure 3(b) illustrates the contents of these specifications.
The analysis specification describes the dilation module
and its interface, which includes a function, notifyCollStart
(tStart), notifies the module when a collective call is issued
(collective matching may require additional inputs). The API
specification describes the MPI calls – GTI provides ready
to use XML specifications for MPI – and the mapping of
any tool analysis to them. In our example, the specification
must include all MPI collective calls, e.g., MPI_Barrier.
It also must specify that the mapping of the dilation mod-
ule’s function notifyCollStart to these calls. A mapping can
directly forward arguments of the API events to the module.
However, the module in our example is interested in a start
time of the collective instead of any MPI call argument. For
such cases GTI allows the specification of operations that
compute new inputs, e.g, issue a call to gettimeofday in order
to derive the collective’s start time.

Finally, the tool user provides a layout specification to
instantiate the tool. Tool developers can provide scripts with
default layouts to hide this complexity, e.g., MUST provides
a “mustrun” script that replaces “mpirun” and handles tool
instantiation. For our example, the user might specify that
the dilation module runs on a single extra process as
centralized collective matching requires (Figure 3(c)). The
next section illustrates a scalable version of this tool.

GTI provides the user with a higher-level abstraction that
generalizes the event-condition-action paradigm for event-
based tools. All preceding approaches to tool infrastructure
provided far more basic services such as wrapper generation.
With GTI, the tool developer only implements the tool
computations and describes the events that trigger them. A
manual approach to the example tool would require an MPI
wrapper for all MPI collectives and would have to spawn
and to drive the extra tool process that runs the collective
matching and time analysis, and to provide a communication
medium along with suitable records for communication.

IV. SCALABILITY FEATURES

A key goal of GTI is to support scalable tools while hiding
as much complexity from the user as possible. In order

to achieve this goal, GTI enables tools to execute analysis
routines asynchronously outside of the application. GTI uses
a Tree Based Overlay Network (TBON) to distribute tool
analyses and provides three main features for scalable tools:

• Minimal forwarding of event records;
• Event filtering;
• Event aggregation.
None of these features is novel by itself. However, GTI

hides their complexities from the user by providing them
within its abstractions. For example, MRNet [8] provides
TBON functionality with filtering and event aggregation, but
tool developers must manually use these features to drive
scalable tool analyses. GTI includes these features within
its event-condition-action paradigm. While mapping actions
– executing analyses – to events is common, our abstraction
supports mapping analyses to parallel events. Our scalability
features within this abstraction allow tools to derive a global
view from these events, while staying within the abstraction.
To our knowledge, no other such approach exists.

This section first characterize how GTI achieves minimal
event forwarding and filtering. We then introduce how to
insert new events within our abstractions. GTI uses this
concept to include event aggregation into its abstraction. We
illustrate this feature with the imbalance example tool.

A. Minimal Records and Filters

GTI automatically reduces the trace records that it for-
wards from one GTI place to another. It drops records
and individual trace record fields that no further analysis
needs. The GTI generation system (next section) enables
this trace record reduction since it generates all source code
that creates, receives, and forwards any event. This reduction
decreases the size and number of event records that are
propagated through the communication tree.

GTI’s filtering functionality removes redundant or super-
fluous trace records from the event stream. These filters
can perform condition-based filtering of events. One of our
demonstration tools in Section VI uses a filter. Filters can
further reduce the number of event records in the system
to decrease the overall load. Filters are added as a special
type of module within the GTI abstraction. Whenever these
modules receive an event, they notify the system of whether
or not this event can be removed through a special return



API	
  Specifica,on:	
  MPI	
  

MPI_Barrier	
  (…)	
  

MPI_Bcast	
  (…)	
  

...
 

Analysis	
  Specifica,on:	
  	
  
	
  Dila)on	
  Tool	
  

Dila)on	
  Module	
  

no,fyColl	
  (tMin,	
  tMax)	
  mapped	
  to	
  

API	
  Specifica,on:	
  
	
  Dila)on	
  API	
  

reducedDila,on	
  (	
  
tMin,	
  tMax)	
  

Dila)on	
  Aggrega)on	
  

no,fyColl	
  (tMin,	
  tMax)	
  
crea

tes	
  

supports	
  

(a) Illustration of a scalable collective imbalance detector.

0	
  

1	
  

2	
  

3	
  

T2	
  

Dila+on	
  
Module	
  

T0	
  

T0	
  

Dila+on	
  
Aggr.	
  

Dila+on	
  
Aggr.	
  

Dila+on	
  
Aggr.	
  

(b) Possible instantiation.

Figure 4. Illustration of a scalable GTI based imbalance detector tool.

value for the analyses of a filter module. We only remove
an event if all other analyses that would receive this event
specify that they accept the filter module. Thus, no crucial
events are removed for modules that are not aware of a filter.
Again, these decisions are made during code generation.

B. Injection of Trace Records

Many tools must inject additional events into the applica-
tion event stream. For example, for runtime error detection
we want to add events for correctness messages during the
MPI event analysis. Further, if any module is only interested
in an event if it fulfills a certain condition, we could inject a
new event with a second module only if that condition is met.
Thus, the first module does not receive any uninteresting
events. Finally, we use the event injection mechanism for
adding aggregations to the GTI abstraction.

GTI exposes event injection through special API events
that tool specifications include. A tool developer can create
a new event by adding an API call for the event to the tool’s
API specification. Further, such API events are marked as
“wrap-everywhere” which notifies GTI that this event can be
created somewhere other than the application processes (e.g.,
on any layer of the TBON). As the API specification defines
these events, the tool developer can directly map any module
to these events. GTI creates a wrapper for these events on
each layer of the TBON and creates an event record when
the wrapper intercepts a call. Thus, if a tool module wants to
create a new event, it queries GTI for the wrapper function to
use for this event and calls it. Afterwards, GTI transparently
handles the creation and forwarding of an event record to
any interested module. Though simplistic, this concept is
extremely powerful and flexible while causing only minor
extensions to the basic abstraction of GTI.

C. Event Aggregation

Finally, we can aggregate many types of records across
multiple processes, e.g., matching events of collective com-
munication calls. Event aggregation is crucial to keep the
number of events that need to be forwarded to the TBON
root constant as scale increases.

GTI uses a special type of modules for event aggregations
that are flagged as “aggregation modules”. An aggregation

module is specified and mapped like regular modules. How-
ever, like filter modules, they use return values to control
the aggregation system. These values notify the driver that
operates TBON nodes if a module starts an aggregation and
needs further input to complete it, whether it completed, or
whether inconsistent data prohibits it. We use a single com-
munication channel that multiple aggregations can operate
in parallel without losing event order [9].

Aggregation modules create aggregated events by in-
jecting a new event into the system. They use the wrap-
everywhere mechanism described above to do so. GTI
removes all input events that a successful aggregation uses,
and with that no redundant events occur. Other modules
must specify which aggregations they support so GTI can
determine when to forward aggregated events. This wrap-
everywhere mechanism allows us to automate placement
of event aggregations on all TBON layers to which they
can be applied. This automation reduces tool development
effort. In summary, we provide event aggregation within our
abstraction by combining special aggregation modules and
the wrap-everywhere mechanism.

We revisit the imbalance detector to illustrate event aggre-
gation. Our first GTI-based tool used a single TBON process
to run the collective matching and time analysis, which limits
scalability. We must distribute the matching of the collective
calls across the TBON to overcome this limitation.

As Figure 3(a) shows, the tool calculates the time dilation
between the first and last process that call the collective.
For distributed collective matching, we store the minimal
(tMin) and maximal (tMax) start time of a partially matched
collective. Both times are equal for the initial events that
contain information of a single collective call. Thus, we
change notifyCollStart(tStart) to notifyColl(tMin,tMax), as
Figure 4(a) illustrates. We still map the dilation module to
all collective calls. We must add a new event, reducedDila-
tion(tMin,tMax), for partially matched collectives. We add a
specification of the “Dilation API” with the event. To match
individual collective calls correctly and to handle partially
matched collectives, we must pass additional arguments
to the dilation module. The concept of channel IDs [9]
simplifies this process. Finally, we must add the aggregation
module, which we call “Dilation Aggregation”. We map its



API	
  Spec.	
  
[*.xml]	
  

API	
  Spec.	
  
[*.xml]	
  

Analysis	
  Spec.	
  
[*.xml]	
  

Analysis	
  Spec.	
  
[*.xml]	
  

Tool	
  Instance	
  

Wrapper	
  Gen	
  Input	
  Wrapper	
  Gen	
  Input	
  

GTI	
  Spec.	
  
[*.xml]	
  

Layout	
  Spec.	
  
[*.xml]	
  

Analysis	
  Spec.	
  
[*.xml]	
  

API	
  Spec.	
  
[*.xml]	
  

GTI	
  Genera=on	
   Weaver	
  

Wrapper	
  Generator	
  Input	
  [*.xml]	
   Arrival	
  Generator	
  Input	
  [*.xml]	
  

Wrapper	
  Generator	
   Arrival	
  Generator	
  

Intermediate Modules Module Library Executable	
   PnMPI	
  Conf.	
  

Build	
  File	
  Wrapper	
  Gen	
  Input	
  Wrapper	
  Gen	
  Input	
  Wrapper	
  Source	
  [*.cpp]	
   Arrival	
  Generator	
  Input	
  [*.cpp]	
  

Specifica=ons	
  

Figure 5. Overview of the GTI generation process.

analysis function notifyColl(tMin,tMax) to the same events
as the dilation module. The aggregation module matches
individual collective calls and partially matched collectives
and creates its aggregated events with the reducedDilation
API call. The dilation module also must specify that it
supports the dilation aggregation.

Thus, we have a scalable version of the imbalance de-
tector. Figure 4(b) shows a potential instantiation of the
tool. It uses four application processes and two layers of
additional tool processes. The aggregation module runs on
both tool layers, whiler the actual time dilation module that
computes the final result only runs on the root of the TBON.
The dilation module receives completely matched collectives
as long as no inconsistencies occur in the event stream.
GTI achieves this by placing the aggregation module on the
root as well. It passes any event in which the aggregation
is interested to the aggregation first and then passes the
aggregated events to the dilation module. All actions that
we use to derive this scalable tool are done within the GTI
abstractions and only require the implementations of the
analysis modules and their specifications.

V. GENERATION AND INSTANTIATION

Implementation of GTI’s powerful abstraction requires
its generation system, the weaver. The weaver provides
overviews of tool modules, API calls, the layout, and in-
put/output relationships of analyses and operations, as well
as extensive detection of specification errors.

The weaver processes the specifications that describe
the tool and its layout. Figure 5 provides an overview of
this processing. The four types of specifications form the
input as discussed in Section III. The weaver accepts one
GTI specification and one layout specification but can use
multiple analysis and API specifications. Using multiple
APIs supports cases in which the tool uses an internal
API for the wrap-everywhere mechanism, as in the example
from the last section. Using multiple analysis specifications
supports easy reuse of existing modules without restricting
the combinations available to tool developers.

A. Workflow

The weaver reads all specifications for the target tool
and forms a global view from these individual elements.
Rather than creating source code directly, it creates XML
representations that describe the intermediate modules re-
quired to instantiate the tool. GTI has two intermediate
module types: wrapper modules and arrival modules. Wrap-
per modules intercept API calls in the application and the
tool processes (for the wrap-everywhere functionality), while
the arrival modules process event records that a tool place
(e.g., a TBON node) receives. GTI generates one wrapper
and arrival module pair for each tool layer. Two types
of code generators, the wrapper generator and the arrival
generator, process the XML specifications for these modules
and produce the source code for the modules. The weaver
then generates a build file that compiles and links the sources
as dynamically loadable modules.

We form the final tool instance by combining tool modules
with the executable, the installation of GTI, the generated
arrival/wrapper modules, and a PnMPI configuration file,
which the weaver generates. This PnMPI configuration file
contains all information required to connect the modules,
including a list of modules for each tool layer, their linkages
and the number of module instances.

B. Processing in the Weaver

As it reads the specifications, the weaver builds a model
of the overall tool. This model supports iteration over all
tool layers, their individual analysis modules, and the API
calls to which these analyses are mapped. A central part of
the generation process calculates event record routing. This
calculation first determines the arguments that each layer
must receive for each API call. The weaver then generates
an ID for each record that carries any arguments. The ID
must uniquely determine the API call that creates the record,
so that each place can identify incoming records with this
ID. The XML inputs for the wrapper/arrival generator list
the shape and ID of each record. Further, for each TBON
layer they contain information on what parts of these records
must be forwarded to adjacent layers. The weaver uses
this information to schedule record routing for each layer.
Further, the inputs list individual actions, including analyses
and operations, which the tool modules will execute.

The weaver also automatically places aggregation mod-
ules onto the TBON layers. The weaver first analyzes which
modules support aggregation and then determines for each
TBON layer if we can place any of these aggregations on
it. The weaver cannot place an aggregation on a layer if a
descendant layer runs a module that does not support it but
shares at least one input event with the aggregation. We use
the same logic to place filters automatically.



0	
  

5	
  

10	
  

15	
  

20	
  

25	
  

0	
   100	
   200	
   300	
   400	
  

Ba
nd

w
ith

/r
an

k	
  
[M

iB
/s
]	
  

Run3me	
  [seconds]	
  

P2P	
   Collec.ve	
  

(a) 512 tasks.

0	
  

5	
  

10	
  

15	
  

20	
  

25	
  

0	
   50	
   100	
   150	
  

Ba
nd

w
ith

/r
an

k	
  
[M

iB
/s
]	
  

Run3me	
  [seconds]	
  

P2P	
   Collec,ve	
  

(b) 2,048 tasks.
Figure 6. Phase profiler statistics for 143.dleslie from Section VII.

C. Module Generation

The two source code generators create the arrival and
wrapper modules. The generated code uses trace records
to store and transfer information about intercepted events.
GTI provides an interface to use generic trace records. The
generators query this interface for record-specific code such
as creating or freeing a record instance, setting/retrieving
an attribute, or record serialization/de-serialization. Thus,
different implementations of this interface can produce dif-
ferent types of trace records, which facilitates future tool
integration. GTI provides a default implementation of this
interface that uses a code generation component itself in
order to create records of minimal size. However, GTI could
also allow use of OTF records with key-value pairs [10],
which would support interesting combinations of GTI with
existing performance optimization tools.

At the application layer, the wrapper module directly
intercepts API events, creates the respective records, and
triggers local analyses. At the tool layers, the tool must
use a main loop that polls the incoming communication
modules [6] to receive event records. A driver module
receives records and passes them to the arrival module.
Usually this driver module is specific to the mechanism
that spawns tool layers. The arrival module unpacks records
according to their unique ID. It passes the record data to any
module that is mapped to the event. Afterwards, the arrival
module reduces the record size, if possible, and it forwards
the record upwards in the TBON if necessary.

VI. CASE STUDIES

In this section we present two GTI-based tools that
demonstrate GTI’s applicability and flexibility. The first tool
provides basic profiling information for execution phases,
while the second detects lost messages of an MPI application
at runtime. Both tools use the scalability features that GTI
offers, while a third GTI-based tool exists that automatically
detects usage errors of MPI datatypes [11]. We introduce the
two example tools and their use of GTI in this section, while
we present performance results in Section VII.

A. Phase Profiler

Our first tool comes from the field of performance analysis
and provides profiling type information for MPI point-to-
point and collective communication. It profiles the total
amount of data that is sent at runtime along with the total
number of communication calls. Users can derive average
communication bandwidth or average message sizes with
this information. In order to provide more detailed insight,
our profiler provides this data for application phases.

Our tool uses MPI collectives that span all processes to
end/start phases. The tool creates an event for profile infor-
mation of the last phase at each such collective. We create
the profiling events directly in-situ within the application
processes. Afterwards, we aggregate them within the TBON
to derive profiling information for all tasks for each phase.
Finally, the root of the TBON receives the phase profiles and
writes them to a trace file. Figure 6 presents performance
insights with the phase profiler. It shows two profiles,
one for 512 tasks (Figure 6(a)) and one for 2,048 tasks
(Figure 6(b)) of an application that we introduce in Sec-
tion VII (143.dleslie). It shows that the benchmark has an
initialization phase of about 5 seconds, which issues close
to no communications. Further, the profiles show that the
average point-to-point bandwidth increases from less than
1 MiB for 512 tasks to more than 5 MiB for 2,048 tasks.
We present the minimal collective bandwidth, as the actual
bandwidth depends on the MPI implementation.

We use three modules to implement this tool with GTI:
PhaseProfiler: Collects communication statistics and

starts/ends phases;
PhaseAggregation: Aggregates phase profile events;
Tracer: Stores phase profiles in a trace file.

We map the PhaseProfiler module to all MPI point-to-
point send calls to store the total number of bytes that
each call transfers. We also map it to all MPI collective
calls to determine how much data they transfer and whether
they are globally synchronizing, e.g., an MPI_Barrier
with MPI_COMM_WORLD as communicator. The module
creates a new event for a phase profile if a collective call is
synchronizing. We use the wrap-everywhere event injection
mechanism that GTI offers to create a phaseProfile event.
The PhaseProfiler module requires information about MPI
datatypes and communicators for its correct operation; we
use existing tracking modules from MUST for these tasks.

The PhaseAggregation module is only mapped to the
phaseProfile event. It matches individual phase events to
create aggregated phase events. During aggregation we can
directly sum up the individual entries of the phase profiles,
e.g., number of bytes sent with point-to-point calls.

Finally, we map the Tracer module to the phaseProfile
event and specify that it supports the PhaseAggregation
module. The Tracer writes information on the phase profiles
in a human readable format into an output file.



Process 0 Process 1
MPI Init() MPI Init()
MPI Recv(from:1) MPI Isend(to:0, &request)

MPI Wait(&request)
MPI Isend(to:0, &request)
MPI Wait(&request)

MPI Finalize() MPI Finalize()

Figure 7. Example of a lost message in MPI.

B. Lost Message Detector

Lost messages are a common correctness problem of
MPI applications. The application fails to post a matching
receive or send for these send and receive operations. This
error can occur if a send is buffered or if a non-blocking
receive operation is not completed, e.g., MPI_Wait is not
called. Lost messages may not result in an error and the
MPI implementation also may not warn about their presence
when calling MPI_Finalize. However, according to the
standard, applications with such lost messages are erroneous.
Depending on the implementation, they can manifest them-
selves as deadlocks or can lead to the unavailability of
resources, while thay can also lead to unintended matches,
incorrect calculations, or even wrong application results.

Figure 7 shows a lost message example. The table shows
histories of MPI calls from two processes. Where process 0
receives a single message from process 1, process 1 instead
sends two non-blocking messages to process 0. The second
send has no matching receive. As in most MPIs, standard
mode send calls are buffered, this application may complete
the second call to MPI_Wait, even though it was not
matched. Thus, the application may complete without any
error for some MPI implementations, despite the usage error
of the outstanding send of process 1.

The example shows that a lost message can exist even
though the application did not deadlock, while at the same
time there may not exist any outstanding requests. Thus,
detecting lost messages requires more than tracking whether
a blocked send/receive call exists or that some request was
not completed. Thus, we must observe all point-to-point send
and receive calls and simulate message matching to detect
all lost messages. If the simulated message matching reveals
any outstanding messages when the last MPI_Finalize
call is issued, we report the lost messages to the developer.

We select this example as message matching is a major
challenge for scalability from our experiences with Um-
pire and Marmot. These correctness tools need message
matching in order to execute type matching and to model
wait states for deadlock detection. We present two GTI
based implementations, a first implementation that performs
a centralized message matching running on the root of the
communication tree and a distributed message matching that
runs on the entire communication tree.

1) Centralized Message Matching: The centralized im-
plementation uses three key analysis modules:
LostMessage: Performs the message matching;
WcUpdate: Monitors for completed wildcard receives;

CreateMessage: Logs lost messages.
The LostMesage module manages lists of outstanding

messages. It uses special handling for wildcard receives,
which are kept in an extra list of outstanding wildcard
receives until a potential match is found. Once we find a
potential match, the message matching simulation cannot
simply use the first match that it detects, but rather must
use the match that the MPI implementation decides. We
update the source of the wildcard receive to ensure the
correct match. The WcUpdate module retrieves this infor-
mation from the status that the application retunrs to the
MPI_Recv call, or the respective completion call if the
receive was initiated with MPI_Irecv. The module uses a
wrap-everywhere event to forward this information. It only
creates the event when a wildcard receive completes, in
order to keep the number of events in the system as low
as possible.

The LostMesage module needs information on persistent
requests, and communicators in order to operate correctly. It
also uses the respective tracking modules from MUST. Fi-
nally, when the lost message tool detects that an unmatched
send or receive call still exists, the implementation supports
the usage of the CreateMessage module. This module is part
of MUST and forwards log events to a logger that may write
the events in a sorted and easily readable format like HTML.

2) Distributed Message Matching: The centralized im-
plementation of the lost message tool is not scalable, since
the number of messages that are analyzed at the root of
the TBON increases with scale. We use a distributed mes-
sage matching implementation to overcome this limitation.
Each node in our TBON receives point-to-point send/receive
events from a set of processes. Each node can match all
sends for which the destination argument is a rank within
this set, and all receives for which the source argument is a
rank within this set. All sends/receives that can be processed
on a certain node do not need to be processed by any
further node, while sends/receives that cannot be matched
by the current node must be forwarded to the next layer
of the communication tree. Finally, the root can process all
remaining sends/receives.

Our distributed matching reuses the LostMessage module.
We augment it with a filter module. We now run the
LostMessage module on all TBON layers to distribute the
message matching. We map the filter module to all point-
to-point events and to check whether we can process a
send/receive on the TBON current node. If so, the event
is filtered out and is analyzed by the LostMessage module
running on the current node, otherwise it is forwarded to the
next layer in the tree.

This strategy has two limitations: the processing of wild-
card receives; and an inefficiency of TBONs for message
matching. The first limitation results from the nature of
wildcard receives. When a TBON node discovers a wildcard
receive, which process will match it is unclear. Thus, it



(a) Communication pattern of NAS-
NPB bt.

(b) Parts of the pattern of NAS-NPB
bt matched on the root.

Figure 8. Visualization of the parts of a communication pattern that need
to be matched on the root for 64 processes.

is unclear which TBON node should process the receive.
Forwarding it to the root of the tree is not sufficient
since we would also have to forward its matching send
to the root, although that send is likely to be processed
and filtered out by another node. Our current distributed
implementation therefore does not support wildcard receives
and aborts if one is observed. A possible solution would
use the following handling strategy: when a TBON node
discovers a wildcard receive, it waits until the arrival of the
updated source, which the WcUpdate module provides. If
it arrives, we can turn the wildcard receive into a regular
receive and process it as such. If it does not arrive, than
the call was either part of a deadlock, or it was a non-
blocking receive for which no completion call was issued.
Both cases represent erroneous MPI usage by themselves
and can be reported to the user. However, waiting for the
update requires that we buffer all events that arrive after the
wildcard receive and that processing continues only after we
receive the updated source, which may be expensive. We do
not test this extension, as our main intention was to evaluate
whether such a distributed message matching is suitable for
correctness checking purposes at scale.

The second limitation results from an inefficiency of tree
networks for message matching. Consider a scenario with a
TBON root being connected to two child nodes. Each node
provides sends/receives from about 50% of the processes and
the root must match all messages between these two sets of
processes, which is 50% of all existing send-recv pairs.

Figure 8(a) shows a communication pattern of the bt
kernel of the NAS parallel benchmarks, as visualized by
many performance tools. In this representation, a cell with
coordinates (x, y) is filled if process x sends a message to
process y. Figure 8(b) shows which communication partners
would be matched on the root for the pattern shown in (a).
More generally, the layers closer to the root have more send-
receive pairs to match than the prior TBON layers, which
shifts large parts of the message matching workload onto
processes close to the root. However, this approximation
only holds for scenarios in which all processes communicate
with all other processes or with an arbitrary communication
pattern. Most applications use far more regular patterns in

which each process only communicates with a small set of
other processes, often neighbors. Figure 8(a) is an example
for such an application. The results in the next section show
that this limitation may only have a small impact in practice.

C. Discussion

The modules of the phase profile example are written
in about 700 lines of code (LOC)1, while the central-
ized lost message detector uses about 1,200 LOC. Both
tools use further tracker modules from MUST that require
about 3,000 LOC in total. However, GTI generates about
17,000 LOC for MPI wrapping, record routing, trace records,
and record arrival while 5,000 additional LOC of GTI
modules are used in our tool instantiations. Thus, the tool
developer only needs to provide a small fraction of the
source code that constitutes the tool, thus decreasing the time
to solution besides the increased flexibility resulting from
GTIs exchangeable communication and offloading system.

Also, GTI provides scalability features for both tools
within its basic abstraction. For the lost message detector,
the additional filter module that allows distributed message
matching is just about 250 LOC. Finally, with GTI tool
modules, we can easily exchange components. For both of
our example tools, we reuse existing MUST modules. In-
terestingly, even though our phase profiler is a performance
tool, we could use components of a correctness tool without
any modification. Thus, wide usage of GTI could simplify
cooperation for future tool development dramatically.

VII. APPLICATION RESULTS

This section presents performance results for the tools
from the previous section. We use an 864 node Opteron
Linux cluster with a QDR InfiniBand network for all exper-
iments. Each node has 16 cores on four sockets and 32 GB
of main memory that is shared between all cores. As bench-
marks we use the NAS Parallel Benchmarks (NPB) [12]
version 3.3 and SPEC MPI2007 [13] version 2.0. For NPB
we use problem size E for the phase profiler and problem
size D for the lost message detector since it has higher
overheads. For SPEC MPI2007 we use the lref data set.
While NPB presents rather simple codes, SPEC MPI2007
presents more complex applications that are derived from
production codes. We present results for the phase profiler
first, followed by results for the centralized detection, and
finally results for its the distributed version.

A. Phase Profiler

We instantiate the phase profiler with a layout where each
TBON node receives events from at most 32 processes. For
example, we use 32 nodes on the first TBON tool layer for
1,024 processes and one additional node on a second layer.
We use MPI-based communication with an aggregation
system to derive a highly optimized communication medium

1Without headers, including comments and empty lines.



-­‐10	
  
0	
  
10	
  
20	
  
30	
  
40	
  
50	
  
60	
  
70	
  
80	
  
90	
  

BT	
   CG	
   IS	
   LU	
   MG	
   SP	
  

Ap
pl
ic
a'

on
	
  S
lo
w
do

ow
n	
  
in
	
  %
	
  

512	
  

1024	
  

2048	
  

(a) NPB.

-­‐10	
  
0	
  

10	
  
20	
  
30	
  
40	
  
50	
  
60	
  
70	
  
80	
  
90	
  

12
1.p
op
2	
  

12
2.t
ac
hy
on
	
  

12
5.R
Ax
ML
	
  

12
6.l
am
mp
s	
  

12
8.G
AP
ge
ofe

12
9.t
era
_E
	
  

13
2.z
eu
sm
p2
	
  

13
7.l
u	
  

14
2.d
mi
lc	
  

14
3.d
les
lie
	
  

14
5.l
Ge
ms
FD
T

14
7.l
2w
rf2
	
  

Ap
pl
ic
a'

on
	
  S
lo
w
do

ow
n	
  
in
	
  %
	
  

256	
  

512	
  

1024	
  

2048	
  

(b) SPEC MPI2007.
Figure 9. Slowdown of the phase profiler.

within the TBON [6]. Figure 9(a) shows the slowdown of
the phase profiler in percent for NPB, whereas Figure 9(b)
shows the slowdown for SPEC MPI2007. As the kernels bt
and sp only support a square number of processes, we use
529 tasks instead of 512 tasks and 2,025 tasks instead of
2,048 tasks for them. For simplicity we use the approximate
powers of two in our performance charts. We excluded the
benchmarks ep and ft since they do not use point-to-point
calls and are thus uninteresting for our lost message detector.
We also omit is since it is not available for class E.

The overhead is about 10% or less for all tests, except
for 128.GAPgeofem. This benchmarks issues about 1,500
globally synchronizing collectives per second and tasks,
for the run with 1,024 processes. We hypothesized that
this saturated TBON bandwidth, as each node must serve
up to 32 tasks. However, experiments with more TBON
nodes do not improve performance. We assume that the
extra communication on the application processes causes
the slowdown, as this benchmark is already communication
bound at 1,024 tasks.

B. Centralized Detector

We use a single additional tool process to instantiate the
centralized lost message detector and use our MPI-based
communication system. Figure 10(a) shows overheads for
the NPB with up to 1,024 tasks and Figure 10(c) shows
overheads for SPEC MPI2007 with up to 2,048 tasks. We
abort some SPEC MPI2007 tests since their overhead was
above 100%. We measure high overheads for the kernels
lu and 121.pop22 that result from their large numbers of
point-to-point messages. At 1,024 tasks, the tool causes
an unacceptable slowdown of more than 100% for most
benchmarks due to the increased workload on the single
process that runs the detector. When doubling the scale, the
total number of sends and receives doubles or triples in many
cases while the base runtime decreases.

C. Distributed Detector

Our tool instantiation uses one TBON node per 32 tasks
while the remaining layers form a binary tree for the

2We use the ltrain input for 121.pop2 for the lost message detector.

distributed version of the lost message detector. As in the
previous experiments we use MPI-based communication.
Figure 10(b) presents the performance results for NPB
with the distributed detector, while Figure 10(d) shows the
results for SPEC MPI2007. Besides the benchmarks that
use no point-to-point communication (ep, ft, 125.RaxML) we
excluded is as the results for the centralized case scale well.
Further, we exclude lu, 137.lu, and 142.dmilc since these
benchmarks use wildcard receives that the current distributed
implementation does not support.

The results show that the distributed implementation sig-
nificantly reduces overhead. The only benchmark that causes
more than 100% slowdown is mg, which has a runtime of
only 5 seconds with 2,048 tasks, so tool initialization and
shutdown become significant. It reduces the overhead for
some benchmarks by an order of magnitude.

VIII. RELATED WORK

First, this work relates to parallel or MPI specific
tool infrastructures, such as DeWiz [14], STCI [15], and
PnMPI [7]. While this work is based on PnMPI, DeWiz
is specific to analyses in event graphs that use a specific
protocol. STCI is a fine grained and low-level approach that
is designed to provide minimal communication overheads.
None of these approaches provides a high level abstraction
or a powerful generation component such as GTI.

GTI also relates to TBON communication work, including
MRNet [8], which is widely used on many systems. GTI’s
strengths are its abstraction and its generation component,
The communication system is flexible and integration or
usage of MRNet is future work. Open questions include the
compatibility of MRNet and PnMPI modules, as well as the
relationship of the GTI aggregation modules and filters to
MRNet streams and filters. Integration would require that we
adapt our order preserving event aggregation system [9] into
MRNet. Further, tools that use their own TBON implemen-
tations include DDT [16] and Periscope [17] We could adopt
optimizations in their communication systems into GTI’s
communication modules.

Finally, GTI’s design and our lost message detector relate
to approaches to runtime MPI error detection, including
ISP [2], Marmot [5], Umpire [4], and MPI-Check [3].



-­‐500	
  

0	
  

500	
  

1000	
  

1500	
  

2000	
  

2500	
  

3000	
  

3500	
  

4000	
  

bt	
   lu	
   cg	
   is	
   mg	
   sp	
  
Ap

pl
ic
a'

on
	
  S
lo
w
do

ow
n	
  
in
	
  %
	
  

64	
  

256	
  

512/529	
  

1024	
  

(a) NPB, centralized detection.

-­‐20	
  

0	
  

20	
  

40	
  

60	
  

80	
  

100	
  

120	
  

140	
  

bt	
   cg	
   mg	
   sp	
  

Ap
pl
ic
a'

on
	
  S
lo
w
do

ow
n	
  
in
	
  %
	
  

256	
  

512/529	
  

1024	
  

2048/2025	
  

(b) NPB, distributed detection.

-­‐200	
  

0	
  

200	
  

400	
  

600	
  

800	
  

1000	
  

1200	
  

1400	
  

1600	
  

12
1.p
op
2	
  

12
2.t
ac
hy
on
	
  

12
5.R
Ax
ML
	
  

12
6.l
am
mp
s	
  

12
8.G
AP
ge
ofe

12
9.t
era
_C
	
  

13
2.z
eu
sm
p2
	
  

13
7.l
u	
  

14
2.d
mi
lc	
  

14
3.d
les
lie
	
  

14
5.l
Ge
ms
FD
T

14
7.l
2w
rf2
	
  

Ap
pl
ic
a'

on
	
  S
lo
w
do

ow
n	
  
in
	
  %
	
  

256	
  

512	
  

1024	
  

2048	
  

(c) SPEC MPI2007, centralized detection.

-­‐10	
  
0	
  

10	
  
20	
  
30	
  
40	
  
50	
  
60	
  
70	
  
80	
  
90	
  

12
1.p
op
2	
  

12
2.t
ac
hy
on
	
  

12
6.l
am
mp
s	
  

12
8.G
AP
ge
ofe

12
9.t
era
_A
	
  

13
2.z
eu
sm
p2
	
  

14
3.d
les
lie
	
  

14
5.l
Ge
ms
FD

14
7.l
2w
rf2
	
  

Ap
pl
ic
a'

on
	
  S
lo
w
do

ow
n	
  
in
	
  %
	
  

256	
  

512	
  

1024	
  

2048	
  

(d) SPEC MPI2007, distributed detection.
Figure 10. Slowdown of the lost message detector.

IX. CONCLUSIONS

We presented GTI, a scalable tool infrastructure for tools
in parallel systems. Our main usage scenario currently is
runtime MPI error detection and was motivated by the need
for more efficient, flexible, and maintainable tool develop-
ment. In contrast to existing approaches, GTI offers a high
level abstraction that is well suited to the specification of
scalable tools. The abstraction is backed by a generation-
based engine that automatically handles many common and
time consuming steps in tool development. Its capabilities
include the generation of wrapper and routing modules, of
trace records, a communication system, and the offloading
of tool analyses. Scalability features in GTI support tools
that benefit from its TBON-based communication system.

Two GTI-based demonstration tools implement a lost
message detector for MPI and a phase profiler. Both tools
can naturally use GTI’s scalability features and incur low
overheads at 2,048 tasks. The lost message detector imple-
ments MPI message matching that is a severe scalability
limit of our previous approaches to MPI runtime checking.
We used a first distributed MPI message matching running
in a TBON. It provides performance improvements of an
order of magnitude. However, our distributed matching may
cause load imbalances for different communication patterns
or higher scales. We have two options to overcome these
limitations. First, we could dynamically reconfigure the tree
in order to adapt connections such that the workload is
balanced within the tree. Second, we could use a special tool
layer that provides intracommunication within the layer, in
order to compute message matching in a single tool layer.
In this case nodes could forward sends/receives that they
cannot process to other nodes within the same layer.

Our experience with the two demonstration tools and
our MUST prototype shows that the GTI abstractions are
natural and support efficient development of non-trivial
tools. We reused many modules of the MUST prototype
without modification in our tools. Thus, GTI is a promising
platform for sharing tool components within the community.

ACKNOWLEDGMENTS

We thank the ASC Tri-Labs and the Los Alamos National
Laboratory for their friendly support. Part of this work was
performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344. (LLNL-CONF-522031).

REFERENCES

[1] Message Passing Interface Forum, “MPI: A Message-
Passing Interface Standard, Version 2.2,” http://www.mpi-
forum.org/docs/mpi22-report.pdf, April 2009.

[2] S. S. Vakkalanka, S. Sharma, G. Gopalakrishnan, and R. M.
Kirby, “ISP: A Tool for Model Checking MPI Programs,” in
PPOPP, 2008, pp. 285–286.

[3] G. R. Luecke, H. Chen, J. Coyle, J. Hoekstra, M. Kraeva,
and Y. Zou, “MPI-CHECK: A Tool for Checking Fortran 90
MPI Programs,” Concurrency and Computation: Practice and
Experience, vol. 15, no. 2, pp. 93–100, 2003.

[4] J. S. Vetter and B. R. de Supinski, “Dynamic Software
Testing of MPI Applications with Umpire,” Supercomputing,
ACM/IEEE 2000 Conference, pp. 51–51, 04-10 Nov. 2000.

[5] B. Krammer and M. S. Müller, “MPI Application Develop-
ment with MARMOT,” in PARCO, ser. John von Neumann
Institute for Computing Series, vol. 33. Central Institute for
Applied Mathematics, Jülich, Germany, 2005, pp. 893–900.



[6] T. Hilbrich, M. Schulz, B. R. de Supinski, and M. S. Müller,
“MUST: A Scalable Approach to Runtime Error Detection in
MPI Programs,” in Tools for High Performance Computing:
Proceedings of the 2nd International Workshop on Parallel
Tools for High Performance Computing, M. S. Müller, M. M.
Resch, A. Schulz, and W. E. Nagel, Eds., ZIH. Springer
Publishing Company, Incorporated, 2009.

[7] M. Schulz and B. R. de Supinski, “PnMPI tools: A Whole
Lot Greater than the Sum of Their Parts,” in Supercomputing,
2007. SC ’07. Proceedings of the 2007 ACM/IEEE Confer-
ence on, Nov. 2007, pp. 1–10.

[8] P. C. Roth, D. C. Arnold, and B. P. Miller, “MRNet: A
Software-Based Multicast/Reduction Network for Scalable
Tools,” in Proceedings of the 2003 ACM/IEEE conference on
Supercomputing, ser. SC ’03. New York, NY, USA: ACM,
2003, pp. 21–.

[9] T. Hilbrich, M. S. Müller, M. Schulz, and B. R. de Supinski,
“Order Preserving Event Aggregation in TBONs,” in Recent
Advances in the Message Passing Interface, ser. Lecture Notes
in Computer Science, Y. Cotronis, A. Danalis, D. Nikolopou-
los, and J. Dongarra, Eds. Springer Berlin / Heidelberg,
2011, vol. 6960, pp. 19–28.

[10] A. Knüpfer, M. Geimer, J. Spazier, J. Schuchart, M. Wagner,
D. Eschweiler, and M. S. Müller, “A Generic Attribute Exten-
sion to OTF and its Use for MPI Replay,” Procedia Computer
Science, vol. 1, no. 1, pp. 2109–2118, May 2010, proc. of the
International Conference on Computational Science (ICCS).

[11] J. Protze, T. Hilbrich, A. Knüpfer, B. R. de Supinski,
and M. S. Müller, “Holistic Debugging of MPI Derived
Datatypes,” in IPDPS 2012: Procedings of the 26th IEEE
International Parallel & Distributed Processing Symposium,
2012.

[12] D. H. Bailey, L. Dagum, E. Barszcz, and H. D. Simon, “NAS
Parallel Benchmark Results,” IEEE Parallel and Distributed
Technology, Tech. Rep., 1992.

[13] “SPEC MPI2007 Benchmark Suite for MPI,”
http://www.spec.org/mpi2007/.

[14] H. Brunst, D. Kranzlmüller, and W. E. Nagel, “Tools for Scal-
able Parallel Program Analysis - Vampir NG and DeWiz,” The
International Series in Engineering and Computer Science,
Distributed and Parallel Systems, vol. 777, pp. 92–102, 2005.

[15] D. Buntinas, G. Bosilca, R. L. Graham, G. Vallée, and G. R.
Watson, “A Scalable Tools Communications Infrastructure,”
in Proceedings of the 2008 22nd International Symposium on
High Performance Computing Systems and Applications, ser.
HPCS ’08. Washington, DC, USA: IEEE Computer Society,
2008, pp. 33–39.

[16] D. Lecomber, “Debugging the Future with
DDT at ORNL,” http://www.nccs.gov/wp-
content/uploads/2009/06/DDT ORNL Tech Day 1109.pdf,
Apr. 2011.

[17] M. Gerndt, K. Fürlinger, and E. Kereku, “Periscope: Ad-
vanced Techniques for Performance Analysis,” in PARCO, ser.
John von Neumann Institute for Computing Series, vol. 33.
Central Institute for Applied Mathematics, Jülich, Germany,
2005, pp. 15–26.


